

Evaluation de l'impact du confinement sur la qualité de l'air dans l'agglomération chartraine

Bilan du 17 mars au 10 mai 2020

AVERTISSEMENT
Les informations contenues dans ce rapport traduisent la mesure d'un ensemble d'éléments en un instant caractérisé par des conditions climatiques propres.
Ce rapport d'études est la propriété de Lig'Air. Toute utilisation de ce rapport et/ou de ces données doit faire référence à Lig'Air.
Lig'Air ne saurait être tenue pour responsable des évènements pouvant résulter de l'interprétation et/ou l'utilisation des informations faites par un tiers.
Photos première page : Lig'Air
r notos premiere page . Lig Ali

TABLE DES MATIÈRES

4VE	VERTISSEMENT2				
ГАВІ	ABLE DES MATIÈRES3				
l.	Introduction2				
II.	Evaluation par la mesure4				
	A.	Méthodologies	4		
	a)	Les stations de mesure	4		
	b)	Les profils de pollution	4		
		1- Les moyennes dites « normales »	4		
		2- Le profil hebdomadaire	4		
		3- Le profil journalier	5		
	В.	Impact sur les oxydes d'azote	5		
	a)	Le dioxyde d'azote NO ₂	5		
	b)	Le monoxyde d'azote N0	7		
	C.	Impact sur les particules en suspension PM10	7		
III.	Ev	aluation par la modélisation haute résolution	9		
	A.	Méthodologies et approches	9		
	a)	Estimation des baisses des émissions en oxydes d'azote	9		
	b)	Paramètres de simulations et hypothèses	10		
	c)	Polluants et domaine	10		
	В.	Evolution spatiale des concentrations en NO2	11		
IV. Conclusion13					
V. Pour être informés					

I. Introduction

Outre la lutte contre le Coronavirus et l'éradication de cette pandémie, le confinement mis en place du mardi 17 mars au dimanche 10 mai a conduit aussi à une importante baisse de l'intensité du trafic routier sur l'ensemble du territoire de Chartres Métropole. Rappelons ici, que le secteur routier est responsable à hauteur de 68% des rejets atmosphériques en oxydes d'azote sur l'agglomération chartraine. Par conséquent, la réduction de l'intensité du trafic devrait entraîner une baisse des niveaux de certains polluants. En effet, l'impact du confinement ne sera pas le même sur tous les polluants. La présence d'un polluant dans l'air n'est pas gouvernée uniquement par l'intensité de ses rejets atmosphériques mais aussi par la diversité de ses sources et par son implication dans la chimie de pollution atmosphérique. Par exemple, certains polluants dits « secondaires » ne sont pas directement émis par les activités humaines, ils se forment dans l'atmosphère par réaction chimique et d'autres sont influencés par le rayonnement solaire. L'impact du confinement sur ces polluants est négligeable voire nul en cette période de l'année. Le plus connu des polluants secondaires est l'ozone (03). Par conséquent ce polluant sera exclu de ce bilan. Ce dernier concerne les oxydes d'azote, émis principalement par le trafic automobile, ainsi que les particules en suspension qui font partie des polluants primaires comme les oxydes d'azote, mais dont les sources sont gouvernées principalement par les secteurs Agriculture et Résidentiel/Tertiaire, à cette période de l'année.

II. Evaluation par la mesure

A. Méthodologies

a) Les stations de mesure

Le présent bilan est basé sur les résultats des stations de mesures implantées sur le territoire de Chartres Métropole (Chartres Trafic (station urbaine trafic) et Fulbert (station urbaine de fond)).

Afin de ne comptabiliser que les journées où le confinement était effectif, la journée du 17 mars a été éliminée de ce bilan.

b) Les profils de pollution

Les données de l'année 2020 seront comparées aux données de l'année 2019 sur la même période, à savoir du 18 mars au 10 mai.

1- Les moyennes dites « normales »

Les moyennes horaires ou journalières dites « normales » sont des moyennes calculées sur la période 18 mars – 10 mai de l'année précédente soit 2019. Ces moyennes permettent d'effectuer un comparatif sur la même période en dehors du confinement.

2- Le profil hebdomadaire

Les concentrations journalières (moyennées par jour de la semaine) mesurées pendant le confinement (18 mars au 10 mai 2020) ont été comparées aux concentrations journalières moyennées dites « normales » par jour de la semaine.

3- Le profil journalier

Les concentrations horaires (moyennées par heure de la journée) mesurées pendant le confinement (18 mars au 10 mai 2020) ont été comparées aux concentrations horaires moyennées dites « normales » par heure de la journée.

B. Impact sur les oxydes d'azote

a) Le dioxyde d'azote NO2

La figure 1 présente les concentrations moyennes en NO₂ enregistrées durant la période du confinement (du 18 mars au 10 mai 2020) ainsi que les moyennes 2019 sur cette même période, enregistrées sur la station de Chartres trafic mesurant les oxydes d'azote.

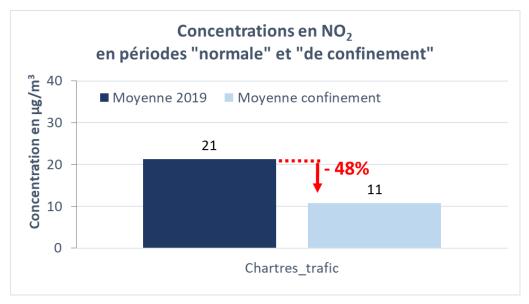


Figure 1 : comparaison des concentrations moyennes en dioxyde d'azote (NO₂) sur l'agglomération chartraine durant le confinement et en période « normale »

Cette figure montre que durant la période de confinement, la station enregistre une baisse notable en NO₂ allant de -48% par rapport à la même période en 2019.

La figure 2 présente le profil hebdomadaire durant la période de confinement et celui d'une situation normale hors confinement (en 2019) sur la station Chartres Trafic.

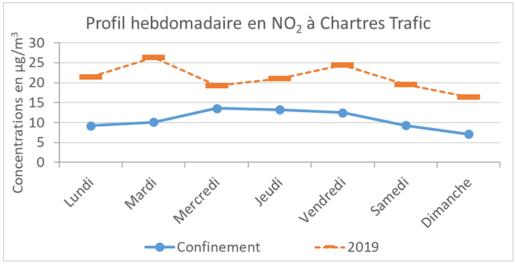


Figure 2 : Profils hebdomadaires en dioxyde d'azote (NO2) sur le site trafic de Chartres

Cette figure montre qu'en situation normale, les niveaux en NO₂ présentent une variation hebdomadaire matérialisée généralement par un maximum les mardis et un minimum les dimanches. Cette fluctuation des concentrations normales est conditionnée, entre autres, par la différence de l'intensité du trafic automobile entre les différentes journées de la semaine.

Le profil hebdomadaire en situation de confinement, présente, lui aussi, une fluctuation des concentrations en NO2 entre les journées de la semaine, avec un minimum le dimanche et un maximum étalé du mercredi au vendredi. L'amplitude de cette fluctuation est beaucoup moins importante que celle observée en situation normale. La présence de cette fluctuation et le minimum dominical montrent que, malgré le confinement, il y avait toujours de la circulation automobile dans l'environnement proche de la station trafic de Chartres mais avec une intensité beaucoup moins importante qu'en situation normale. Notons que le maximum hebdomadaire en période de confinement (mercredi) est quasiment équivalent au minimum hebdomadaire d'une situation normale (enregistré le dimanche). Ces concentrations constituent les plus faibles jamais observées sur ce site.

Enfin, quelle que soit la journée de la semaine, les concentrations journalières enregistrent une forte baisse par rapport à la normale. Les baisses les plus importantes sont observées les mardis avec un maximum de -62% en moyenne.

La figure 3 présente le profil journalier durant la période de confinement et celui d'une situation normale hors confinement sur la station trafic de Chartres.

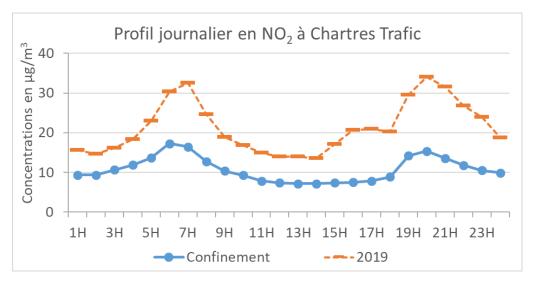


Figure 3 : Profils journaliers en dioxyde d'azote (NO₂) sur le site trafic de Chartres

Cette figure montre qu'en situation normale, les concentrations en NO₂ présentent une variation journalière matérialisée généralement par un minimum nocturne entre 1h et 3h du matin et par deux maxima journalière : un le matin (5h-8h) et l'autre, plus étendu, entre 16h et 21h. Cette fluctuation journalière des concentrations normales est largement conditionnée par la différence de l'intensité du trafic automobile entre les différentes heures de la journée. Ainsi, les deux maxima correspondent aux heures de pointe où la circulation automobile est intense et les axes sont congestionnés. Le minimum nocturne est lié à une circulation fluide et moins intense.

En période de confinement, le profil journalier présente lui aussi une variabilité horaire mais avec une amplitude moins importante que celle observée sur le profil normal. La concentration minimale est enregistrée au milieu de la journée (12h - 15h). Une autre

différence entre ces deux profils concerne le 2ème maximum journalier qui est plus étalé sur la soirée. Ceci traduit une baisse du trafic routier et un changement de comportement lié aux autorisations de sortie, notamment pour les achats de première nécessité.

Enfin le maximum horaire en période de confinement est du même ordre de grandeur que le minimum horaire en situation normale. Les baisses les plus importantes sont enregistrées sur les pointes de la journée. La baisse maximale atteint -64% à 16h.

b) Le monoxyde d'azote NO

Le NO provient de la combustion d'énergies fossiles (en site trafic : moteurs des véhicules automobiles), et est donc rejeté par les pots d'échappement des voitures. Dans l'air, en présence de l'ozone, se transforme en dioxyde d'azote (NO₂).

Le NO n'est pas un polluant réglementé mais il permet également d'apprécier la baisse importante des émissions provenant du trafic routier et de compléter les informations sur le NO_2 . Son comportement est semblable à celui du NO_2 et il enregistre lui aussi des baisses plus importantes sur le site trafic de Chartres.

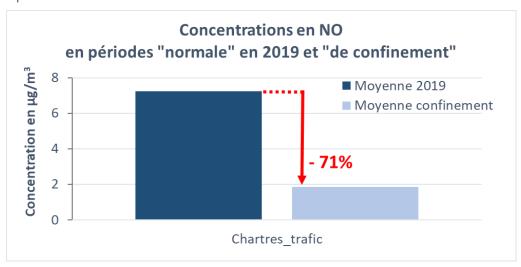


Figure 4 : comparaison des concentrations moyennes en monoxyde d'azote (NO) sur l'agglomération chartraine durant le confinement et en période « normale »

Sur la période de confinement, les baisses du NO sont de l'ordre de 71% en site trafic de Chartres (figure 4).

C. Impact sur les particules en suspension PM₁₀

Contrairement aux oxydes d'azote dont la source principale est le trafic automobile, les sources des particules en suspension sont plus diversifiées et sont conditionnées, à cette période de l'année, principalement par les secteurs Agriculture (47% en mars à 52% en avril) et Résidentiel/Tertiaire (32% à 25%) (tableau 1). Le secteur transport routier arrive en dernière position avec 9% et 10% des rejets totaux en mars et avril en situation « normale » (inventaire des émissions polluantes - Lig'Air - 2016).

Secteur	Mars	Avril
Agriculture	46,8%	52,3%
Résidentiel/Tertiaire	32,5%	25,3%
Industrie	11,5%	12,2%
Transports	9,2%	9,9%

Tableau 1 : sectorisation des particules en suspension en mars et avril en situation « normale » sur le territoire de la région Centre-Val de Loire (Inventaire des émissions polluantes – Lig'Air – 2016)

Autre différence avec les oxydes d'azote, les particules en suspension peuvent être transportées d'une zone à une autre et donner ainsi naissance à des épisodes de pollution régionaux voire nationaux et même européens.

Par conséquent, l'impact du confinement et en particulier le rôle joué par la circulation automobile ne sera pas le même que celui constaté sur les concentrations en oxydes d'azote.

Pendant la période de confinement, un épisode de pollution aux particules en suspension PM₁₀ s'est déroulé les 27 et 28 mars. Cet épisode d'ampleur nationale a touché tout le nord de la France par des apports de masses d'air chargées en PM₁₀ provenant de pays voisins.

La figure 5 présente les concentrations moyennes en particules en suspension enregistrées durant la période du confinement (du 18 mars au 10 mai) avec et sans épisode de pollution ainsi que les moyennes normales, sur cette même période, enregistrées sur la station de Fulbert mesurant les particules en suspension PM₁₀.

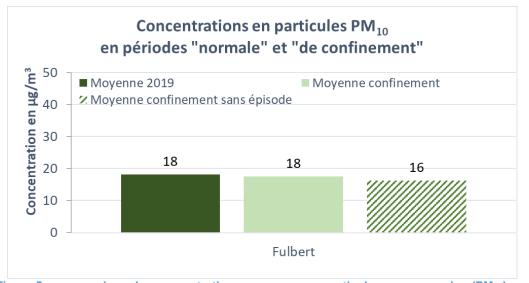


Figure 5 : comparaison des concentrations moyennes en particules en suspension (PM₁₀) sur l'agglomération chartraine durant le confinement et en période « normale »

Cette figure montre clairement que le confinement et la réduction de la circulation automobile n'ont pas eu d'impact clair et notable comme c'est le cas pour les oxydes d'azote. Les concentrations normales et celles observées pendant le confinement avec ou sans l'épisode de pollution, sont de même ordre de grandeur.

Ces observations semblent confirmer que les concentrations en particules en suspension ne sont pas seulement gouvernées par l'intensité de la circulation automobile mais plutôt par la résultante de l'ensemble des sources citées ci-avant et en particulier les secteurs Agriculture (qui représente à lui seul environ 50% des émissions atmosphériques en PM₁₀ sur l'ensemble de la région en situation « normale ») et Résidentiel/Tertiaire (qui représente environ 30% des émissions en PM₁₀ sur la région en situation « normale »).

En effet, la période printanière est la période de reprise des activités du secteur agricole, qui a coïncidé avec le début de la période de confinement. Ce secteur est le principal émetteur de particules secondaires «nitrates d'ammonium » produites à partir des épandages d'engrais et lisiers.

A cela, s'ajoutent les émissions du secteur résidentiel liées à l'utilisation du chauffage et à la production d'eau chaude sanitaire. Malgré des conditions météorologiques clémentes en avril 2020, soit pendant le confinement, le besoin de chauffage a augmenté du fait de la présence continuelle des occupants dans leur logement.

L'augmentation des émissions liées au chauffage, pendant la période du confinement, a été estimée entre 15% et 20% au niveau national (Estimation publiée par l'Office parlementaire d'évaluation des choix scientifiques et technologiques le 14 mai 2020).

L'analyse des profils journaliers, en situations normale et pendant la période de confinement (figure 6), montre que ces deux profils présentent de très faibles amplitudes d'une journée à l'autre et que les moyennes journalières en période de confinement sont systématiquement équivalentes aux moyennes normales.

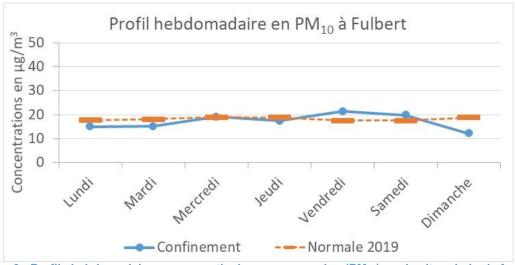


Figure 6 : Profils hebdomadaires en en particules en suspension (PM₁₀) sur le site urbain de fond de Fulbert à Chartres

La moyenne des concentrations en PM₁₀ sur la totalité de la période de confinement est identique à la moyenne sur la même période en 2019 en site de fond.

III. Evaluation par la modélisation haute résolution

En situation normale, Lig'Air utilise la modélisation haute résolution pour la prévision des épisodes de pollution avant leurs arrivées à 48 heures et l'information de la population par anticipation. Il l'utilise aussi, pour réaliser l'évaluation annuelle de la qualité de l'air en tout point du territoire.

La modélisation haute résolution, implantée dans l'outil Prévision'Air, a été adaptée à la situation du confinement afin de produire un bilan cartographique des concentrations en NO₂ tout en estimant les quantités d'émissions évitées en oxydes d'azote et en Gaz à Effet de Serre GES.

A. Méthodologies et approches

a) Estimation des baisses des émissions en oxydes d'azote

Idéalement, un tel exercice devrait être réalisé en se basant sur les comptages réels du trafic routier pendant la période du confinement. Or, ces données n'étaient, et ne sont, pas encore disponibles sur l'ensemble du territoire régional. Par conséquent, devant ce manque

de données, l'estimation de la baisse des émissions routières a été approchée en réalisant plusieurs simulations numériques. Chacune de ces simulations a été réalisée en abaissant progressivement les émissions en oxydes d'azote et en comparant les résultats obtenus aux concentrations en dioxyde d'azote mesurées aux différentes stations de mesure. Ce long travail de sensibilité et de comparaison des concentrations en NO2 mesurées et modélisées a permis de fixer l'abattement des émissions routières en oxydes d'azote à un taux moyen optimal de 70% par rapport à une situation normale.

Il est évident que le taux d'abattement réel n'est pas homogène sur tous les axes routiers considérés dans cette modélisation. Il varie suivant la nature, la typologie et l'importance de l'axe mais aussi en fonction de l'heure dans la journée. Dans cet exercice de modélisation, et sur la base des tests réalisés, le taux moyen de 70% de réduction a été appliqué à tous les axes du domaine régional et à toute heure de la journée. Dans cette configuration, le biais moyen entre concentrations mesurées et modélisées aux points stations, est estimé à environ 23%.

b) Paramètres de simulations et hypothèses

Afin d'approcher l'impact du confinement par modélisation numérique, des concentrations horaires ont été calculées en tout point de la région entre le 18 mars et le 10 mai 2020, suivant deux situations :

- 1- en supposant que la pandémie n'a jamais existé : « situation sans confinement »,
- 2- condition réelle avec présence de la pandémie : « situation avec confinement ».

Les simulations de ces deux situations ont été réalisées avec les paramètres météorologiques spécifiques à la période du 18 mars au 10 mai 2020.

Les émissions liées au trafic routier, ont été réduites de 70% dans la simulation « situation avec confinement » par rapport à celles utilisées dans la simulation « situation sans confinement ». Les émissions des autres secteurs émetteurs sont restées inchangées entre les deux simulations.

Après avoir comparé les résultats des simulations obtenues aux points stations de mesures, il est apparu que la semaine du 23 mars était représentative de la période de confinement et que le modèle était particulièrement bien calé pour la journée du jeudi 26 mars 2020. Cette journée a donc été utilisée pour la carte des heures de pointe.

c) Polluants et domaine

Les simulations ont été réalisées à l'échelle régionale afin de prendre en compte la continuité territoriale des émissions, les déplacements des masses d'air et le transport des polluants. Les résultats sur le territoire de Chartres Métropole, comme ceux sur les autres territoires, sont une extraction du domaine régional.

Seuls les résultats spécifiques au dioxyde d'azote sont discutés dans ce bilan. Ce polluant est le seul polluant réglementé dont les concentrations ont présenté, par la mesure, une forte baisse pendant la période du confinement.

B. Evolution spatiale des concentrations en NO2

La figure 8 présente les évolutions spatiales des concentrations moyennes en NO_2 calculées entre le 18 mars et le 10 mai 2020 suivant les deux situations « sans confinement » et « avec confinement ».

Tout en respectant les valeurs limites, le territoire de Chartres Métropole présente des concentrations beaucoup plus élevées en situation « sans confinement » qu'en situation « avec confinement ».

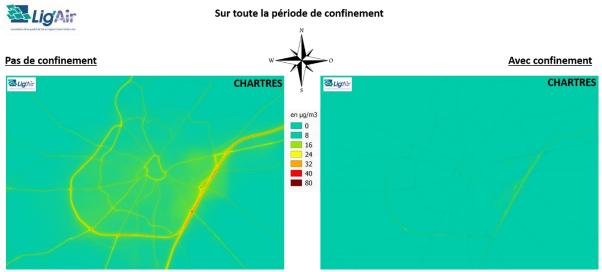


Figure 8 : Evolution spatiale des concentrations moyennes en NO₂ sur Chartres Métropole (concentrations moyennes simulées sur la période du 18 mars au 10 mai 2020 suivant les deux situations (« sans confinement » et « avec confinement »)

En situation « sans confinement », les niveaux les plus importants sont localisés sur les principaux axes à forte circulation automobile comme l'autoroute A11 et la rocade (portion N123). Les concentrations en N0₂ baissent lorsqu'on s'éloigne des routes, montrant ainsi l'impact direct de la circulation automobile sur la présence de ce polluant.

En situation « avec confinement », les concentrations en NO_2 sont plutôt homogènes sur le territoire et ne présentent qu'un faible gradient entre les axes routiers et le reste du territoire, montrant ainsi le fort impact de la réduction du trafic automobile sur les concentrations en NO_2 en particulier dans les environnements proches des axes de circulation.

La figure 9 présente la spatialisation des concentrations en NO₂ obtenues dans les deux simulations, à 18h (heure de pointe pour la journée du 26 mars) ainsi que la carte de différence entre ces deux simulations.

La carte des écarts de concentrations en NO_2 (figure 9 carte c) met en évidence les zones où l'impact du confinement est le plus important sur les niveaux en NO_2 . Ainsi, les zones où la diminution des concentrations en NO_2 est la plus importante correspondent aux axes à forte circulation automobile tels que l'autoroute A11 et la rocade (portion N123). La baisse la plus importante sur le territoire de Chartres Métropole a été évaluée sur l'autoroute A11 (intersection avec la N154) avec une baisse de l'ordre de 70 μ g/m³ par rapport à la situation hors crise COVID-19.

Cette analyse rejoint les résultats de mesure qui ont montré que les baisses les plus importantes ont été observées pendant les heures de pointe et sur les stations urbaines trafic. Elle montre plus généralement que la mise en place du confinement a eu un impact beaucoup plus important sur les concentrations en NO₂ le long des axes routiers de Chartres Métropole et dans leurs proches environnements. Cet impact est encore plus important sur les concentrations horaires des heures de pointe du matin et du soir que celles obtenues durant la nuit où habituellement le trafic routier est fortement réduit.

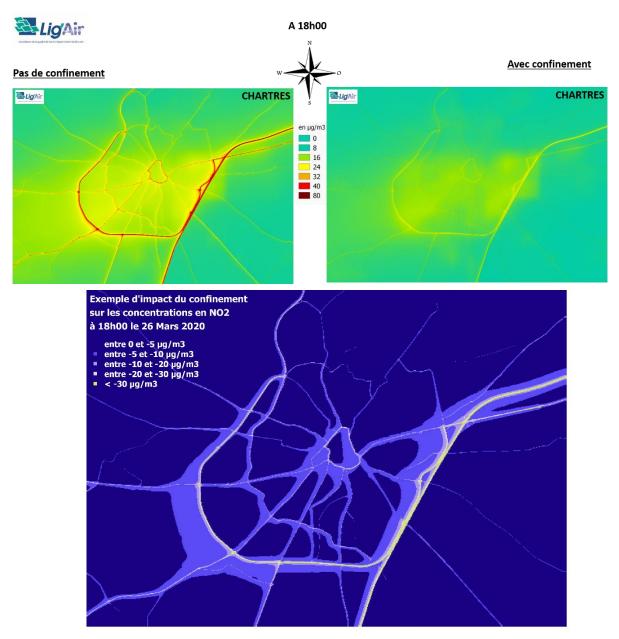


Figure 9 : Concentrations horaires en NO₂ obtenues à 18h00 le Jeudi 26 mars (a) sans confinement et (b) pendant le confinement et (c) carte de différence, sur le territoire de Chartres Métropole

IV. Conclusion

La qualité de l'air pendant le confinement mis en place dans le cadre de la pandémie du Coronavirus a observé une amélioration des concentrations des oxydes d'azote (traceurs de la pollution automobile) de 48% de dioxyde d'azote en moins sur le site urbain trafic de Chartres. Des baisses en moyennes horaires allant jusqu'à 64% ont été observées par rapport aux situations dites « normales » (année de référence : 2019). La réduction de la circulation automobile a conduit directement à une forte baisse des niveaux en dioxyde d'azote.

L'expertise réalisée à partir des concentrations en NO₂ obtenues à l'aide de la plate-forme de modélisation haute résolution Prevision'Air en situation hors crise COVID-19 et en situation de confinement sur le territoire de Chartres Métropole a permis de montrer que l'impact du confinement :

- est plus important au niveau des axes à grande circulation ;
- est plus important aux heures de forte circulation automobile (heures de pointe du matin et du soir notamment) ;
- a permis d'améliorer la qualité de l'air sur le territoire limitant ainsi l'exposition de la population à de fortes concentrations en NO₂ en particulier à proximité des axes routiers.

Le constat est plus mitigé pour les particules en suspension PM₁₀. L'impact n'est pas aussi positif que pour les oxydes d'azote. La période de confinement enregistre une moyenne équivalent à celle mesurée en 2019 en situation normale sans confinement. L'augmentation des émissions liées à l'utilisation accrue du chauffage, du fait du confinement, et à la reprise de l'activité agricole ont largement compensé les baisses liées à la diminution de la circulation automobile.

Pour compléter ce bilan, la baisse de la circulation automobile a conduit aussi à une réduction des émissions en GES. Ainsi durant la période du confinement près de 39000 teqCO₂ ont été évitées sur le territoire de Chartres Métropole. Cette baisse correspond à environ 70% de la quantité émise habituellement sur la même période.

A partir du 11 mai 2020, la première phase de déconfinement a lieu avec une reprise partielle des activités économiques. Au fur et à mesure des différentes phases de déconfinement, les niveaux des polluants vont progressivement revenir à leurs niveaux habituels.

Pensez au bon geste :

Se déconfiner et préserver la qualité de l'air, c'est possible ! Déplacez-vous avec des transports actifs comme le vélo, la marche...

V. Pour être informés

Lig'Air est sur :

- internet http://www.ligair.fr/
 - o toutes les données http://www.ligair.fr/toutes-les-donnees
 - o les actus http://www.ligair.fr/actualites
 - o les publications http://www.ligair.fr/les-publications
 - 0 ...
- les réseaux sociaux <u>Facebook</u> et <u>Twitter</u>
- France 3 : « Info Air » quotidien après le 19/20 régional

Lig'Air propose des abonnements gratuits http://www.ligair.fr/lig-air/les-abonnements :

- Indices quotidiens de la qualité de l'air par mail
- Alertes par mail
- Sentimail' (à partir de l'indice médiocre) par mail
- Messag'Air (à partir de l'indice médiocre) par SMS

Lig'Air met à votre disposition des tableaux de bord Air/Climat/Energie par territoire

- Commun'Air
- ODACE

260 avenue de la Pomme de Pin 45590 SAINT-CYR-EN-VAL

> Tel: 02-38-78-09-49 Mail: <u>ligair@ligair.fr</u>